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Abstract

Cancer cells obtain mutations which rely on the production of diffusible
growth factors to confer a fitness benefit. These mutations can be consid-
ered cooperative, and studied as public goods games within the framework
of evolutionary game theory. The population structure, benefit function and
update rule all influence the evolutionary success of cooperators. We model
the evolution of cooperation in epithelial cells using the Voronoi tessellation
model. Unlike traditional evolutionary graph theory, this allows us to imple-
ment global updating, for which birth and death events are spatially decoupled.
We compare, for a sigmoid benefit function, the conditions for cooperation to
be favoured and/or beneficial for well-mixed and structured populations. We
find that when population structure is combined with global updating, coop-
eration is more successful than if there were local updating or the population
were well-mixed. Interestingly, the qualitative behaviour for the well-mixed
population and the Voronoi tessellation model is remarkably similar, but the
latter case requires significantly lower incentives to ensure cooperation.

Keywords— multiplayer games, cooperation, evolutionary game theory, Voronoi
tessellation, epithelial automata

1 Introduction

1.1 Cooperation between cancer cells

Oncogenesis is a process of somatic evolution. In order to become cancerous there
are certain key mutations which cells must obtain, corresponding to the hallmarks
of cancer [1, 2]. Evolutionary game theory provides a framework for modelling
mutations which have a fitness effect beyond the cell itself. For example, certain
mutations can be considered cooperative, in that they invoke a cost to the cell which
is recuperated as a shared benefit. This is evident when the benefit relies on the
production of a diffusible growth factor [3, 4], as is the case for a number of the
hallmarks of cancer, such as self-sufficiency in growth signalling and sustained an-
giogenesis. The Warburg effect, whereby tumour cells metabolise through glycolysis
even when oxygen is abundant [5], can also be considered cooperative [6].

∗Corresponding author: jessica.renton.16@ucl.ac.uk

1

ar
X

iv
:2

10
1.

11
27

7v
2 

 [
q-

bi
o.

PE
] 

 3
 S

ep
 2

02
1



Cooperative mutations benefit the population as a whole; however, it is often the
case that defection (e.g. not producing growth factor) results in higher individual
fitness. This is because the defector shares in the benefits without paying any
fitness costs associated with cooperating. Understanding the conditions under which
cooperation can evolve, despite the incentive to defect, has been a topic of extensive
study within evolutionary game theory [7–9].

Cooperation is usually considered to be a desirable outcome. For example, within
the social sphere or amongst healthy constituent cells of a multicellular organism.
Cooperation between cancer cells, however, can drive tumour growth [10]. This is of
course detrimental to the patient, and thus, disrupting cooperation between cancer
subclones, possibly by exploiting its evolutionary weaknesses, could be an important
avenue for treatment [11, 12].

1.2 Public goods games

Applications of evolutionary game theory to model cancer evolution have mainly
focussed on two-player games, whereby cells participate in multiple pairwise inter-
actions within the population [13–15]. Interactions between cancer cells however,
tend to happen in groups. For example, a cell producing a growth factor will pro-
vide a benefit to other cells within its diffusion range. These types of mutations are
thus better represented as multiplayer public goods games (PGGs) [16], played be-
tween producer (cooperator) and non-producer (defector) cells. The former produce
growth factor at a fixed cost to their fitness. Both producers and non-producers re-
ceive a fitness benefit as a function of the frequency of producers in their interaction
neighbourhood.

The most common PGG, known as the N-person prisoner’s dilemma (NPD),
uses a linear benefit function [17, 18]. However, non-linear benefit functions may be
more realistic [19, 20], and can lead to much richer dynamics, even for well-mixed
populations. An example is the volunteer’s dilemma (VD), which defines the benefit
as a Heaviside step function [21–24].

A sigmoid benefit function has been proposed as an appropriate model for growth
factor production. Experiments on neuroendocrine pancreatic cancer cells in vitro
have found sigmoid dependence of proliferation rates on the concentration of growth
factor IGF-II [19]. Furthermore, such a function is relatively general, with both the
NPD and VD arising as extreme cases [25].

1.3 Population structure and update rules

Most cancers originate in epithelia. These are tissues formed of sheets of cells, which
are approximately polygonal on their apical surfaces. It is important to take into
account this population structure when modelling the evolutionary dynamics. For
both two-player cooperation games [26, 27] and multiplayer PGGs [28], cooperators
tend to have greater success in structured populations, as compared to well-mixed
ones, because they are able to form mutually beneficial clusters.

Evolution on structured populations is usually modelled within the framework
of evolutionary graph theory [29], in which the population is represented as a fixed
graph. Epithelial cells tend to have six neighbours on average, and thus can be
represented as a hexagonal lattice. Introducing more realistic population structures,
with small variation in neighbour number, does not have a significant impact on
evolutionary outcomes [30, 31].
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The success of cooperation is also dependent on the update dynamics. Within
evolutionary graph theory, the population evolves according to an update rule. In
general, update rules can be divided into two categories: local and global [32].

1.3.1 Local updating

A local update involves a spatial relationship between birth and death events. Evo-
lutionary graph theory usually requires a local update rule in order to maintain the
fixed graph structure. Two commonly used local update rules are defined as follows:

• birth-death: a cell is selected to divide with probability proportional to fitness;
one of its neighbours is chosen to die uniformly at random.

• death-birth: a cell is chosen to die uniformly at random; one of its neighbours
is selected to divide with probability proportional to fitness

In both cases the offspring of the dividing cell occupies the empty site left by the
dead cell [33]. The choice between these update rules has a substantive effect on
evolutionary outcomes. For example, consider a two-player prisoner’s dilemma game
and a population represented by a regular graph. Cooperation can be favoured for
a death-birth update rule, so long as the benefit is high enough. For the birth-death
update, however, as is the case with a well-mixed population, cooperation is only
favoured for an infinitely large benefit [26].

These update rules are sometimes referred to as BD-B (birth-death with selection
on birth) and DB-B (death-birth with selection on birth) to emphasise that selection
is acting on birth. Alternative update rules, for which selection acts on death, can
then be referred to as BD-D and DB-D [34]. In this paper, we limit ourselves to the
case where selection acts on birth, thus we do not use this notation to differentiate
the two cases.

1.3.2 Global updating

Under a global update rule there is no spatial dependence between birth and death
events, thus cells are selected to reproduce and die from the population as a whole.
Global updating is generally seen for well-mixed populations, or when populations
are organised in phenotype space [35] or by sets [36].

Within evolutionary graph theory the shift update rule is an example of global
updating. In this case a cell is chosen to divide with probability proportional to
fitness, and a second cell is chosen to die uniformly at random. A path is then
selected on the graph which connects the two. Cells are shifted along this path until
there is an empty node next to the dividing cell for its progeny to occupy. This kind
of update works well on a one-dimensional lattice [37], and promotes cooperation,
even compared to the death-birth update. However, it becomes more complex in
two-dimensions [38], because division causes cellular rearrangement at a distance
from the event.

1.3.3 Epithelial structure and dynamics

Evolutionary graph theory has several shortcomings for modelling invasion processes
in epithelia. Firstly, it assumes that the population can be represented by a static
graph, whereas epithelia are dynamic structures. Secondly, as we have discussed,
introducing global update rules into evolutionary graph theory presents challenges
to the modelling framework [38].
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The question then arises as to which update rule is most realistic for an epithe-
lium. This will depend on the extent to which death and division processes are
spatially coupled. For homeostatic tissues it is likely that contact inhibition, the
phenomenon whereby cells stop proliferating at high density, plays an important
role in maintaining the population size [39]. The death-birth update rule could be
an appropriate model when contact inhibition is very strong, as tissue density is
likely to be low near a recent death. Conversely, a global update rule is likely to
be more realistic when contact inhibition is weaker and thus there is less spatial
dependence between death and division.

The death-birth and decoupled update rules represent extreme cases of spatial
coupling between division and death. In this paper we focus on global updating, as
the death-birth update rule, along with other local update rules, has been extensively
studied within evolutionary graph theory [9, 26, 28, 40]. In future work, we will
consider the spectrum of spatial coupling that can arise in a tissue due to contact
inhibition, and how this affects the evolution of cooperation.

In line with our previous work [31], we use the Voronoi tessellation (VT) model
[41, 42] to represent epithelial dynamics. Unlike traditional evolutionary graph the-
ory models, the tissue structure is dynamic and cells are able to divide and die
independently. It is thus straightforward to spatially decouple birth and death, and
we are able to introduce a global form of updating, we call the decoupled update
rule. In [31], we used this framework to analyse the two-player prisoner’s dilemma
game, finding that cooperation was more successful for the decoupled update rule,
than for a death-birth update rule. The present paper extends these results to a
wide range of multiplayer public goods games, as well as deriving general results for
global update rules.

We aim to extend the range of applicability of quasi-analytical methods from
evolutionary game theory to more realistic tissue models. We have chosen to use
the VT model, because it uses a very simple force law and, as a cell-centre model,
naturally provides the graph structure needed for evolutionary games [41]. Further-
more, unlike cellular automata models, cell division leads only to local topological
changes. The VT model has been used to represent cellular dynamics in colonic
and intestinal crypts, including for models of invasion [43, 44]. Other tissue models,
such as the vertex model [45], could also be appropriate for our purposes.

The version of the VT model we use represents a simple epithelium1 as a two-
dimensional structure. Thus our results are mostly relevant to the early stages of
tumorigenesis or field cancerization [46] in simple epithelia. While models of later
stage tumour evolution would be more appropriately modelled in three dimensions,
two-dimensional models, such as the VT model, can still be useful in the first in-
stance.

1.4 Measures of mutant success

For stochastic evolutionary games without mutation, we can compare the success
of different strategies by calculating fixation probabilities. Here we consider the
dynamics of two cell types: A and B. The fixation probability ρX is then defined
as the probability that a single initial mutant X will eventually take over the entire
population. We consider two measures for the success of an A mutant [33, 40]:

1A simple epithelium is formed of a single layer of cells, whereas a stratified epithelium is
multilayered.
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• A is a beneficial mutation when ρA > ρ0. Here ρ0 = 1/Z is the fixation
probability for a neutral mutant and Z is the population size.

• A is favoured by selection, or has an evolutionary advantage, when ρA > ρB.
This is equivalent to the condition that the equilibrium frequency of A is
greater than a half when mutation is allowed (A is the dominant strategy).

In general, these conditions are not equivalent, thus it is possible for a mutation
to be beneficial but not favoured, or vice versa. One or the other condition might
be more relevant to quantifying mutant success depending on the circumstances.
Furthermore, under certain circumstances these two conditions are equivalent [40].

The remainder of this paper explores conditions under which a mutation is ben-
eficial and/or favoured. We begin in Section 2 by setting out the mathematical for-
malism for multiplayer evolutionary games, focussing particularly on PGGs played
between cooperators and defectors. Section 2.1 then introduces the σ-rule, which
is used to determine whether a strategy is favoured. We outline several known re-
sults on graphs with local update rules, as well as deriving results for a birth-death
and shift update rule on a cycle. We then derive the conditions for favourability
on a general population structure with global updating. In Section 2.2 we derive a
similar rule, but for a strategy to be beneficial. In Section 3 we apply this theory
to consider conditions for cooperator success in an epithelium, using spatial statis-
tics calculated through simulation of the Voronoi tessellation model. Finally, in
Section 4, we discuss the implications of our work for the evolution of cooperative
public goods in epithelia and make some remarks on the different significance of
beneficial and favourable mutants.

2 Evolutionary dynamics of multiplayer games
We consider an arbitrary multiplayer game with two strategies, A and B. Players
interact in groups of size N = k + 1, and obtain payoffs aj,k and bj,k respectively,
where j is the number of A co-players and k is the total number of co-players. For
a graph-structured population, the co-players are direct neighbours. The fitness of
each individual is then defined as 1 + δaj,k or 1 + δbj,k, where δ is the selection
strength parameter.

The population evolves according to a Moran process [47], i.e. at each time-step
one individual dies and another reproduces, thus keeping the population size, Z,
constant. How these individuals are chosen is determined by the update rule. We
consider cases where reproduction, but not death, is dependent on fitness.

Many of the results we derive in the following sections are for general games,
however we are focussed on PGGs played between producer/cooperator cells (C)
and non-producer/defector cells (D). These games are defined by a benefit function
b · β(x) and a cost function which we take to be constant c, with b > c. Here x
is the proportion of cooperators in a cell’s interaction group. Thus cooperator and
defector payoffs are defined respectively as

aj,k = b · β
(
j + 1

k + 1

)
− c , bj,k = b · β

(
j

k + 1

)
. (1)

In order to ensure that the payoff is higher when all players cooperate than when
no players cooperate we enforce the condition b · β(N)− c ≥ b · β(0). Often this is
done by setting c = 1, b > 1, β(N) = 1 and β(0) = 0.
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The NPD and VD can both be defined in this form by specifying the benefit
functions:

β(x) = x (NPD) (2)
β(x) = Θ(x− x̃) , (VD) (3)

where Θ(x) is the Heaviside step function and x̃ is the minimum proportion of
cooperators required to obtain the benefit. Furthermore we can define a general
sigmoid benefit function:

β(x) =
α(x)− α(0)

α(1)− α(0)
, (4)

where
α(x) =

1

1 + es(h−x)
(5)

is the logistic function, s is the steepness and h is the inflection point. We can regain
the NPD and VD by taking the limits s→ 0 and s→∞ respectively (see Figure 1).

0 1
x

0

1

(x
)

0 1
x

Figure 1: Logistic benefit function. Left panel: h = 0.5; s = 1 (dash-dot), s = 10 (dash)
and s = 1000 (solid). We can regain the limiting cases by letting s→ 0 (NPD) or s→∞
(VD). Right panel: s = 10; h = 0.2 (dash-dot), h = 0.5 (dash), h = 0.8 (solid).

2.1 The σ-rule: conditions for cooperation to be favoured

For a particular update rule and population structure, the σ-rule allows us to deter-
mine which is the favoured strategy [48]. We recall from Section 1.4, that a strategy
A is favoured over B, when ρA > ρB.

The σ-rule states that

ρA > ρB ⇐⇒
k∑
j=0

σj(aj − bk−j) > 0 , (6)

where σj are the structure coefficients. It is assumed that the group size, N =
k + 1, is fixed, thus we have let aj,k = aj and bj,k = bj. The structure coefficients
are dependent on the population structure and update rule, but not the payoffs.
Therefore if we calculate σj for a given population structure and update rule, we
can determine the favoured strategy for any game.

For certain population structures, such as the well-mixed population and the
cycle graph, the state is fully described by the number of A-players, n. Thus we can
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define the ratio of fixation probabilities as

ρA
ρB

=
Z−1∏
n=1

T+
n

T−n
, (7)

where T±n are the transition probabilities to go from n → n± 1 A-type individuals
[49]. This does not hold in general, as the transition probabilities in more complex
population structures will depend on the spatial configurations of different cell types,
and thus are not uniquely defined by n. However, it is still possible to utilise this
equation, as we see in Sections 2.1.6 and 2.2, by averaging over possible states to
approximate T±n .

In the following we consider various cases where the structure coefficients can
be calculated from transition probabilities in the weak selection limit, i.e. when
δ � 1. This limit is commonly employed within evolutionary graph theory in
order to obtain analytical results, e.g. [9, 32, 50]. Essentially, weak selection implies
that the payoffs obtained by playing the game are only a small contribution to
overall fitness. It allows expansion of fixation probabilities in powers of the selection
strength parameter.

We outline known results for the well-mixed population, the cycle graph with
death-birth update rule and k-regular graphs with death-birth update rule. We
also introduce some new results, deriving the structure coefficients for the cycle
graph with birth-death and shift update rules. Finally, we derive a new approxi-
mate expression for the structure coefficients of any population structure with global
updating.

2.1.1 Well-mixed population

The structure coefficients for a well-mixed population are given by [51]:

σj =

{
1 , if 0 ≤ j ≤ N − 2
Z−N
Z

, if j = N − 1
(8)

(see also Section 2.1.6). Thus we can obtain the condition for ρA > ρB by plugging
these into Equation (6). For a PGG defined by Equation (1) the condition that
cooperators are favoured is

Z −N
Z

b [β(1)− β(0)] >
N−1∑
j=0

σjc . (9)

This becomes
b

c
>
N(Z − 1)

Z −N
, (10)

when we set β(1) = 1 and β(0) = 0. Clearly the shape of the benefit function does
not impact whether cooperation is favoured. For a large population this condition
becomes b/c > N .

2.1.2 Cycle graph: death-birth update

We can obtain exact expressions for the structure coefficients of the cycle graph,
in the weak selection limit. The cycle is a one-dimensional lattice with periodic
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boundary conditions. Individuals interact with their two nearest-neighbours, thus
we have group size N = 3.

The structure coefficients for the death-birth update rule are derived in [28].
They are given by

σ0 = 1 , σ1 = Z − 2 , σ2 = Z − 3 . (11)

From Equation (6) we obtain the condition for cooperation to be favoured under an
NPD, defined by Equation (2):

b

c
>

3(Z − 2)

2(Z − 3)
, (12)

which for Z → ∞ becomes b/c > 3/2. These conditions are lower than those
obtained for a well-mixed population. For a general PGG defined by Equation (1)
we can write down the condition

b

c
>

2(Z − 2)

(Z − 3)[β(1) + β(2/3)− β(1/3)− β(0)]
. (13)

2.1.3 Cycle graph: birth-death update

We derive novel results for the birth-death and shift update rules on the cycle, using
a similar method to [28] for the death-birth update rule. For the cycle, the transition
probabilities are uniquely defined by the number of A-players in the population, n.
Thus we can write down the ratio of transition probabilities for each n. For a
birth-death update rule these are

T+
n

T−n
=


(1 + δa0)/(1 + δb1) , if n = 1

(1 + δa1)/(1 + δb1) , if 1 < n < Z − 1

(1 + δa1)/(1 + δb2) , if n = Z − 1 .

(14)

Substituting these into Equation (7), and taking the limit, δ � 1, we obtain

ρA
ρB
≈ 1 + δ[a0 − b2 + (Z − 2)(a1 − b1)] . (15)

In order that ρA > ρB, the second term must be positive. Thus, comparing this
condition with Equation (6), we find the structure coefficients

σ0 = 1 , σ1 = Z − 2 , σ2 = 0 . (16)

For the NPD, cooperation is favoured when

b

c
>

3(Z − 1)

Z − 3
, (17)

which becomes b/c > 3 in the large population limit, Z → ∞. These conditions
are equivalent to those obtained for the well-mixed population. For a general PGG
defined by Equation (1) the condition is

b

c
>

Z − 1

(Z − 3)[β(2/3)− β(1/3)]
. (18)
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2.1.4 Cycle graph: shift update

We follow the same procedure to derive the structure coefficients for the shift update
rule. This time the ratio of transition probabilities is given by

T+
n

T−n
=


(Z−1)(1+δa0)

2(1+δb1)+(Z−3)(1+δb0)
, if n = 1

(Z−n)(2(1+δa1)+(n−2)(1+δa2))
n(2(1+δb1)+(Z−n−2)(1+δb0))

, if 1 < n < Z − 1

2(1+δa1)+(Z−3)(1+δa2)
(Z−1)(1+δb2)

, if n = Z − 1 .

(19)

In the weak selection limit, δ � 1, Equation (7) becomes
ρA
ρB
≈ 1 + δ [(a0 − b2) + 2(HZ−1 − 1)(a1 − b1)) + (Z − 2HZ−1)(a2 − b0)] , (20)

where Hm is the m-th harmonic number:

Hm =
m∑
n=1

1

n
. (21)

Thus the structure coefficients are given by

σ0 = 1 , σ1 = 2(HZ−1 − 1) , σ2 = (Z − 2HZ−1) . (22)

The condition for cooperation to be favoured in the NPD is
b

c
>

3(Z − 1)

3(Z − 1)− 4HZ−1

. (23)

In the large population limit this becomes b/c > 1. As this condition is required in
the definition of the NPD, we can state that cooperation is always favoured in the
large population limit for a shift update under weak selection.

In fact, if we consider a general cooperation game as defined by Equation (1) we
obtain the condition

b

c
>

1

β(1)− β(0)
(24)

in the large population limit, Z →∞. Letting β(1) = 1 and β(0) = 0, we regain the
condition b/c > 1. Thus for the shift update on the cycle, as with the well-mixed
population, the condition for cooperation to be favoured is not dependent on the
shape of the benefit function (although in this case we required the large population
limit). Furthermore cooperation is favoured on the cycle with shift update for all
PGGs, as defined by Equation (1), given that the population is sufficiently large.

2.1.5 Approximate results for k-regular graphs

In higher dimensions the transition probabilities are no longer uniquely defined by
the number of A-players in the population, but depend also on their configuration.
Peña et al [28] have derived expressions for the structure coefficients of regular graphs
of degree k ≥ 3, with death-birth updating, using pair approximation and diffusion
approximation [26]. They compared theoretical predictions with simulation results
for the case of a volunteer’s dilemma game. They find a good fit for random regular
graphs, but that the approximations underestimate the critical benefit-to-cost ratio
for lattices.

We do not state the full expressions here which are non-trivial functions of k.
The condition for cooperation to be favoured with the NPD in the large population
limit (Z � k) is given by [28]

b

c
>
k + 1

2
. (25)
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2.1.6 Structure coefficients under global updating

In the following we derive novel results for the structure coefficients under global
updating. We find a general expression which is exact under certain conditions, and
provides an approximation for the structure conditions for any population structure
with global update rule. The proceeding sections have considered games played on a
fixed graph or well-mixed population, within groups of fixed size, N . For well-mixed
populations we were free to choose N (although some results required N � Z),
while for regular graphs we set N = k+ 1, where k is the degree of the graph. Here
we relax this condition and allow for variable group size.

We make the assumption that there is a fixed distribution, fA/Bj (n, k), defining
the probability that an A/B-player interacts with j co-players of type A, given it
has k co-players in total and there are n players of type A in the population. If
the population were defined on a graph, this would be the probability of an A/B-
player having j A-type neighbours, given k total neighbours. This assumption is
true for a well-mixed population or cycle graph, but not necessarily for other popu-
lation structures where fA/Bj (n, k) depends on the specific configuration of players.
The frequency of individuals with k neighbours is given by gk. We make the fur-
ther assumptions that this distribution is fixed, and does not depend on type. See
Appendix B for a discussion of the validity of this assumption for the VT model.

In general, for a global update rule, we can define the transition probabilities

T+
n =

Z − n
Z

nFA
nFA + (Z − n)FB

T−n =
n

Z

(Z − n)FB
nFA + (Z − n)FB

, (26)

where

FA = 1 + δ
Z−1∑
k=1

k∑
j=0

fAj (n, k)gkaj,k (27)

FB = 1 + δ
Z−1∑
k=1

k∑
j=0

fBj (n, k)gkbj,k (28)

are the population averaged fitnesses. The payoffs aj,k and bj,k depend explicitly on
the number of neighbours k.

Substituting Equations (26) to (28) into Equation (7), and taking the weak
selection limit we obtain

ρA
ρB
≈ 1 + δ

Z−1∑
n=1

Z−1∑
k=1

k∑
j=0

gk[f
A
j (n, k)aj,k − fBj (n, k)bj,k]︸ ︷︷ ︸

Γ

. (29)

Thus ρA > ρB when Γ > 0. In the weak selection limit,

fAj (n, k) = fBk−j (Z − n, k) (30)

must hold by symmetry, and thus
Z−1∑
n=1

fAj (n, k) =
Z−1∑
n=1

fBk−j(n, k) . (31)

Therefore we have

Γ =
Z−1∑
k=1

k∑
j=0

Z−1∑
n=1

gkf
A
j (n, k)(aj,k − bk−j,k) . (32)
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The condition for A to be favoured over B is thus given by

Z−1∑
k=1

k∑
j=0

σj,k(aj,k − bk−j,k) > 0 , (33)

where

σj,k = gk

Z−1∑
n=1

fAj (n, k) (34)

are the structure coefficients. For a fixed group size, N = k + 1, this reduces to
Equation (6), with

σj =
Z−1∑
n=1

fAj (n) , (35)

where we have dropped the explicit dependence on k.
Recall that this derivation is based on the assumption that gk and fAj (n, k) are

fixed. While this is not true in most cases, we can obtain an approximation for the
structure coefficients by averaging over a large ensemble of population configurations,
i.e. letting fAj (n) = 〈fAj (n)〉0. Here, 〈.〉 represents the mean taken over possible
configurations and the 0 indicates that these are obtained in the neutral selection
limit, i.e. δ = 0.

The well-mixed population is an example where fAj (n) is fixed. It is defined by
a hypergeometric distribution:

fAj (n) =

(
Z − 1

k

)−1(
n− 1

j

)(
Z − n
k − j

)
. (36)

We can therefore find the structure coefficients [51] by substituting this expression
for fAj (n) into Equation (35):

σj =

(
Z − 1

k

)−1 Z−1∑
n=1

(
n− 1

j

)(
Z − n
k − j

)
︸ ︷︷ ︸

S

. (37)

It can be shown (see Appendix A in [51]) that

S =

{(
Z
k+1

)
if 0 ≤ j < k(

Z−1
k+1

)
if j = k .

(38)

Thus the structure coefficients are given by

σj =

{
Z
k+1

if 0 ≤ j < k

Z−k−1
k+1

if j = k .
(39)

These are equivalent to Equation (8) up to a constant factor. The cycle graph also
has a fixed distribution, fAj (n), thus the structure coefficients for the shift update
rule can also be obtained exactly using Equation (35).

For a variable group size the structure coefficients for the well-mixed population
are given by

σj,k = gkσj(k) = gk

{
Z
k+1

if 0 ≤ j < k

Z−k−1
k+1

if j = k,
(40)
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where σj(k) are defined in Equation (39).
As we have seen in previous sections, once the structure coefficients have been

determined, we can use Equation (6) or Equation (33) to find the condition under
which cooperation is favoured. For a PGG defined by Equation (1) this is given by

b

c
>

Z − 1∑Z−1
k=1

∑k
j=0 σj,k

[
β
(
j+1
k+1

)
− β

(
k−j
k+1

)] . (41)

2.2 Conditions for cooperation to be beneficial under global
updating

Thus far, we have considered conditions under which a mutant is favoured. However,
we recall from Section 1.4, that an alternative measure of mutant success can be
obtained by considering the conditions under which it is beneficial. Here, we derive
the condition for an A-mutant to be beneficial, i.e. ρA > ρ0.

As in the previous section, we make the assumption that the distributions gk and
f
A/B
j (n, k) are fixed. Thus the population averaged fitnesses of A and B players are
defined by Equations (27) and (28) and the transition probabilities by Equation (26).
The fixation probability for a single A-mutant [49] is then given by

ρA =

[
1 +

Z−1∑
m=1

m∏
n=1

T−n
T+
n

]−1

. (42)

Substituting in the transition probabilities and taking the weak selection limit δ � 1
we obtain

ρA =
1

Z
+

δ

Z2

Z−1∑
k=1

k∑
j=0

(
θAj,kaj,k − θBj,kbj,k

)
+O(δ2) , (43)

where we have defined

θAj,k = gk

Z−1∑
m=1

m∑
n=1

fAj (n, k) (44)

θBj,k = gk

Z−1∑
m=1

m∑
n=1

fBj (n, k) = gk

Z−1∑
m=1

m∑
n=1

fAk−j(Z − n, k) . (45)

The final equality is obtained by symmetry arguments in the weak selection limit.
The condition for A to be a beneficial mutation, ρA > 1/Z, is therefore given by

Z−1∑
k=1

k∑
j=0

(
θAj,kaj,k − θBj,kbj,k

)
> 0 . (46)

If we consider a PGG as defined by Equation (1), then cooperation is beneficial
when

b

c
>

Z(Z − 1)

2
∑Z−1

k=1

∑k
j=0

[
θAj,k β

(
j+1
k+1

)
− θBj,k β

(
j

k+1

)] . (47)

For a fixed group size N = k + 1 these conditions simplify to

k∑
j=0

(
θAj aj − θBj bj

)
> 0 (48)
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and
b

c
>

Z(Z − 1)

2
∑k

j=0

[
θAj β

(
j+1
k+1

)
− θBj β

(
j

k+1

)] , (49)

where

θ
A/B
j =

Z−1∑
m=1

m∑
n=1

f
A/B
j (n, k) . (50)

3 Public goods games in an epithelium
A number of studies have considered the evolutionary dynamics of sigmoid PGGs
in epithelia, representing the tissue either as a well-mixed population [52], or a fixed
graph structure with various local update rules [30, 53]. Here we use the framework
introduced in [31] to incorporate explicit tissue dynamics, using the Voronoi tes-
sellation (VT) model, with a spatially decoupled (global) update rule. This means
that when the population is updated, a division and death occur simultaneously,
but there is no spatial dependence between the two events.

In this section we briefly introduce the VT model, before calculating conditions
under which cooperation is favoured and beneficial for a sigmoid PGG. We verify
theoretical results by running simulations in various parameter regimes. We also
compute the gradient of selection in order to obtain a fuller picture of the dynamics.
In all cases we compare VT model results with the well-mixed population.

3.1 Voronoi tessellation model

The VT model represents a tissue as a set of points, corresponding to cell centres
[41, 42]. The shape of each cell, as well as its neighbour connections, is determined
by performing a Voronoi tessellation. Cells move subject to spring-like forces, which
they exert on their neighbours.

The population evolves through a process of sequential update events, each con-
sisting of a cell division and a cell death, which occur simultaneously. We choose
to temporally couple division and death in this way to maintain a constant popu-
lation size. Allowing separate stochastic birth and death processes, without some
other mechanism to maintain homeostatic population size, would result in popula-
tion extinction or rapid growth. This is something we will address in future work,
by introducing contact inhibition as a means of controlling the population size.

Update events occur at rate λ, according to a continuous time Moran process.
When an update occurs, a cell is chosen to divide with probability proportional to
fitness. This parent cell is removed from the tissue and replaced with two identical
progeny cells, separated by a distance ε, across a uniformly random axis. Simulta-
neously, a cell is chosen to die uniformly at random, and is removed from the tissue.
A full description of the VT model used is given in Appendix A.

We obtain gk and fAj (n, k) by averaging over a large ensemble of possible states
in the weak selection limit. We then make the assumption that variation around this
mean can be neglected. Figures 3 and 4 show the distributions gk and fAj (n, k) for
the VT model under neutral selection, calculated by averaging over 500 simulations,
each of which starts with a single neutral mutant and is run to fixation. An example
simulation is shown in Figure 2. See Appendix B for further discussion on neighbour
distributions in the VT model and the validity of assuming gk is independent of n
and cell type.
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1 day 4 days 8 days 24 days

Figure 2: Time snapshots for a simulation of mutant invasion in the Voronoi tessellation
model with decoupled update rule. The simulation is initialised with a single neutral
mutant (grey) in a population of Z = 100 cells and run until fixation. Selection is neutral
(δ = 0), so all cells have equal fitness. Parameters for the Voronoi tessellation model are
given in Table 1.
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Figure 3: Degree distribution for the Voronoi tessellation model. Error bars show standard
deviation. Data is obtained from simulations with population size, Z = 100.

3.2 Favourable cooperation

The condition for cooperation to be favoured can be approximated by calculating
the structure coefficients using Equation (34). Figure 5 plots the VT structure
coefficients with those for a well-mixed population as defined by Equation (39).

Using the structure coefficients we can derive the condition for cooperation to be
favoured for an arbitrary PGG, as defined by Equation (1). We define the critical
benefit-to-cost ratio (b/c)∗1, such that ρC > ρD when b/c > (b/c)∗1. Thus from
Equation (41) we can write(

b

c

)∗
1

=
Z − 1∑Z−1

k=1

∑k
j=0 σj,k

[
β
(
j+1
k+1

)
− β

(
k−j
k+1

)] . (51)

For an NPD, defined by Equation (2), this becomes(
b

c

)∗
1

=
Z − 1∑Z−1

k=1

∑k
j=0 σj,k

2j+1−k
k+1

. (52)

Substituting in the structure coefficients we obtain (b/c)∗1 ≈ 2.22 for the VT
model with decoupled update rule and population size Z = 100. For a well-mixed
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Figure 4: Frequency distributions fAj (n, k) and fBj (n, k) for Z = 100. These define the
probability that a cell of type A/B has j neighbours of type A, given k neighbours total
and n cells of type A in the population. The lower panel compares values of fBj (n, k)
calculated directly through simulation (black) with values obtained from the simulated
data for A cells defined by fBj (n, k) = fAk−j(Z − n, k).

population with the same group size distribution we obtain (b/c)∗1 ≈ 7.35. As we
would expect there is a significant increase in the success of cooperative mutants
under the VT model. This is due to the high level of assortment in the VT model,
which means cooperators are likely to have more cooperator neighbours than defec-
tors.

On average, cells have six neighbours, thus the mean group size is seven. We
can therefore compare the critical benefit-to-cost ratio for a well-mixed population
with variable group size, given above, to that of a well-mixed population with fixed
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Figure 5: Comparing the structure coefficients for the Voronoi tessellation model with
decoupled update (VT) and a well-mixed (WM) population with variable group size. Vari-
ation in group size arises naturally in the VT model due to its neighbour distribution,
which is plotted in Figure 3. We set the group size distribution for the WM population to
be equal to that of the VT model. Members of each group are then selected uniformly at
random for the WM population.

group size, N = 7. The latter is given by Equation (10) to be (b/c)∗1 = 7.45. Clearly,
incorporating variation in group size into the well-mixed population has a negligible
impact on whether cooperation is favoured. We note however, that the level of
variation in group size we have considered, which is realistic for an epithelium, is
small. Larger variation in group size, such as that observed for scale-free networks,
may have a larger effect [30].

We can also use Equation (51) to determine (b/c)∗1 for a sigmoid benefit function,
defined by Equation (4). Recall that the logistic function has two parameters: the
steepness, s, and the inflection point, h. Figure 6 compares the predicted values
of (b/c)∗1 for the VT model, with those for a well-mixed (WM) population with
group size 7, and hexagonal lattice (HL) with death-birth update rule. These are
obtained from Equation (51) by using the relevant structure coefficients in each case
(structure coefficients for death-birth update on regular graphs are derived in [28]).

Values of (b/c)∗1 are symmetric across h = 0.5 for all three cases, and minimised
at h = 0.5 for the hexagonal lattice and VT model. In Appendix C we show that
(b/c)∗1 is in fact minimised at h = 0.5, so long as the structure coefficients increase
with j for 0 ≤ j < k. For the well-mixed population (b/c)∗1 does not vary with
either s or h. Furthermore, it is clear for all population types, that as the NPD is
approached (s→ 0), (b/c)∗1 becomes independent of h.

In all parameter regimes, (b/c)∗1 is highest for the well-mixed population. Both
the VT model with decoupled update and HL with death-birth update show similar
variation with s and h, however (b/c)∗1 is always lower for the VT model. There-
fore in terms of thresholds for favourability, we can determine that cooperation is
most successful in the VT model with decoupled update, followed by the hexagonal
lattice with death-birth update. Cooperation does least well in the well-mixed pop-
ulation. This suggests that both population structure and global updating promote
cooperation.

Figure 7 (right panel) shows the variation of (b/c)∗1 with h and s for the VT
model. As we have discussed, these results are based on the approximation that
fAj (n, k) and gk are fixed. In order to verify the accuracy of this approximation
we compare Equation (51) with simulation results in Figure 8. Simulated values of
(b/c)∗1 were obtained for each parameter set (s, h) as follows. We calculated ρC/D for
various b/c values, by running 104 simulations of the VT model to fixation, starting
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Figure 6: Comparing the critical benefit-to-cost ratio, (b/c)∗1 at which ρC > ρD, for a
logistic benefit function. For a well-mixed population with N = 7 (WM), (b/c)∗1 is highest,
and independent of the inflection point, h, and steepness, s. For the Voronoi tessellation
model with decoupled update (VT) and fixed hexagonal lattice with death-birth update
(HL), (b/c)∗1 varies with h and s. For small s the benefit function approaches linearity and
we regain the results for an NPD.

with a single C/D mutant and population size Z = 100. In all simulations we use
small selection strength (δ = 0.025) and set c = 1. Thus (b/c)∗1 is determined by the
point at which ρC = ρD.

There is a decent fit between simulation and theory. It is possible this could be
improved by running larger numbers of simulations, however the model is computa-
tionally expensive. In any case the qualitative behaviour is consistent. For a fixed
steepness, s, (b/c)∗1 is minimised at h = 0.5 and (near) symmetric across this value.
The values of (b/c)∗1 are highest when h = 0 and h = 1, where the benefit function
provides diminishing returns or increasing returns respectively.

3.3 Beneficial cooperation

Thus far we have considered conditions for cooperation to be favoured, i.e. where
ρC > ρD. We can also define the critical benefit-to-cost ratio (b/c)∗0 above which
cooperation is beneficial, i.e. ρC > ρ0. From Equation (47) this is given by(

b

c

)∗
0

=
Z(Z − 1)

2
∑Z−1

k=1

∑k
j=0

[
θAj,k β

(
j+1
k+1

)
− θBj,k β

(
j

k+1

)] , (53)

where θA/Bj,k are calculated from the distributions fA/Bj (n, k) and gk according to
Equations (44) and (45).

Figure 7 (left panel) plots (b/c)∗0 against s and h. We can see that for large
s, (b/c)∗0 is maximised at h = 1 and has a minimum at h ≈ 0.35. For smaller s
this minimum moves towards h = 0. As s decreases further, the logistic function
approaches linear and there is negligible variation in (b/c)∗0 with h. In the limit
s → 0 the game becomes an NPD, with (b/c)∗0 = (b/c)∗1 ≈ 2.2. Figure 9 compares
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Figure 7: Critical benefit-to-cost ratios for the VT model with decoupled update. These
are given by Equations (51) and (53) for a PGG with logistic benefit function, defined
by Equation (4). Parameters s and h correspond to the steepness and inflection point of
the benefit function, respectively. Cooperation is beneficial when b/c > (b/c)∗0 (left) and
favoured when b/c > (b/c)∗1 (right).
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Figure 8: Critical benefit-to-cost ratio, (b/c)∗1, above which ρC > ρD, for a logistic benefit
function. The solid line plots Equation (51) and circles are simulation data. For both
s = 5 and s = 10 there is symmetry across h = 0.5, at which point (b/c)∗1 is minimised.

simulated values of (b/c)∗0 with the theoretical prediction, finding good agreement
between the two for a range of s and h values.

We saw in Figure 6 that the critical benefit-to-cost ratios for cooperation to be
favoured, (b/c)∗1, are lower in the VT model compared to the well-mixed population.
Figure 10 plots (b/c)∗0 for a well-mixed population with N = 7 and the VT model
with decoupled update, showing clearly that the critical benefit-to-cost ratios for
cooperation to be beneficial are also lower for the VT model. Thus under both
measures, cooperation is promoted by the VT model. In contrast to (b/c)∗1, which
was independent of the shape of the benefit function for the well-mixed population,
(b/c)∗0 is an increasing function of h, so long as s is sufficiently large.

In general, conditions for cooperation to be beneficial are not equivalent to con-
ditions for cooperation to be favoured. This is evident from Figure 11, where we
plot (b/c)∗0 and (b/c)∗1 against h for various values of s. The parameter space can
be divided into regions where cooperation is both favoured and beneficial, favoured
but not beneficial, beneficial but not favoured, and neither favoured nor beneficial.

From Figure 11 we can see that (b/c)∗0 = (b/c)∗1 when h = 0.5. Furthermore,
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Figure 9: Critical benefit-to-cost ratio, (b/c)∗0, above which ρC > ρ0, for a logistic benefit
function. The solid line plots Equation (53) and circles are simulation data. For small s
the logistic benefit function becomes near linear and the game approaches an NPD, thus
there is little variation in (b/c)∗0. For larger s there is strong dependence on the inflection
point, h, particularly for h > 0.5.
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Figure 10: Comparing the critical benefit-to-cost ratio, (b/c)∗0 at which ρC > ρ0, for a
PGG with logistic benefit function. The critical ratio is always higher for the well-mixed
population with N = 7 (WM), than for the Voronoi tessellation model with decoupled
update (VT). For small s the benefit function becomes near linear and variation of (b/c)∗0
with h is small. For WM, (b/c)∗0 increases with h, taking its minimum value at h = 0. By
contrast, for VT, there is a minimum of (b/c)∗0 at h ≈ 0.35 when s is sufficiently large. For
both WM and VT, (b/c)∗0 is maximised at h = 1, for any given s.

as s decreases, the regions of parameter space where cooperation is beneficial, but
not favoured, or favoured, but not beneficial, get smaller. For sufficiently small s
we obtain (b/c)∗0 ≈ (b/c)∗1. In Appendix D we show that the sigmoid public goods
game satisfies a property called antisymmetry-of-invasion when s → 0 or h = 0.5.
This guarantees that the conditions for a mutant to be beneficial and favoured are
equivalent. For both the VT model and well-mixed populations it is clear that
behaviour where cooperation is beneficial but not favoured, is only possible when
h < 0.5. Conversely behaviour where cooperation is favoured but not beneficial
occurs only when h > 0.5.

We can understand this intuitively by considering the extreme cases (h = 0, 1)
of the VD game, obtained by letting s → ∞. When h = 0, a cooperator always
receives the full benefit, even if it has no cooperator neighbours. Defectors require
a single cooperator neighbour to obtain the benefit. Thus both cooperators and
defectors have higher than average fitness early on in the invasion process, when
they are most vulnerable to extinction. It is therefore possible, depending on the
benefit-to-cost ratio, that both perform better than a neutral invader, and therefore
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both are beneficial mutations. However, one can still be favoured over the other if
its fixation probability is higher.

The converse is true when h = 1: defectors will never receive any benefit, and
cooperators only obtain the benefit when surrounded by other cooperators. Thus
when the number of cooperators/defectors is small, they have lower than average fit-
ness, and there is a high chance they die out early in the invasion process. Therefore,
it is possible that neither performs better than a neutral invader.
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Figure 11: Success of cooperator mutants in the VT model (left) and well-mixed population
(right), for a PGG with logistic benefit function. The solid line corresponds to (b/c)∗0, where
ρC = ρ0. The dashed line corresponds to (b/c)∗1, where ρC = ρD. Blue region (top): C
is beneficial and favoured (ρC > ρD and ρC > ρ0). Green region (left): C is beneficial
but not favoured (ρD > ρC > ρ0). Pink region (right): C is favoured but not beneficial
(ρ0 > ρC > ρD). Orange region (bottom): C is neither beneficial not favoured (ρC < ρD
and ρC < ρ0).

3.4 Gradient of selection

We can obtain more insight into what is happening in the different parameter regions
by looking at the gradient of selection, G(n) = T+(n) − T−(n). The transition
probabilities are defined by Equation (26), thus in the weak selection limit, δ � 1,
the gradient of selection becomes

G(n) ≈ Z − n
Z

n

Z
δ

{
Z−1∑
k=1

k∑
j=0

gk(f
A
j (n, k)aj,k − fBj (n, k)bj,k)

}
. (54)

The sum essentially gives the difference in expected payoffs of A and B players.
Thus, the right-hand side is identical to the replicator equation which describes the
deterministic dynamics which can be obtained in the large-population limit. The
sign of G(n) indicates the direction of selection, and we can consider the roots of
G(n) as ‘fixed points’. Of course, for a finite population there are only two absorbing
states, n = 0 and n = Z, however the location of fixed points is still important. In
particular the system may remain for a long time near a stable fixed point. We
can classify the behaviour of the system in different parameter regions based on the
fixed points of the gradient of selection.
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Figure 12 plots G(n) for a PGG with various values of h, s and b/c, both for the
VT model and well-mixed population. There are four dynamical regimes, consistent
with the deterministic results for PGG in a well-mixed population in [52]:

(i) Dominance: there are only two fixed points at n = 0 and n = Z. Defection
dominates if the n = 0 fixed point is stable, while cooperation dominates if
the n = Z fixed point is stable.

(ii) Coexistence: there is an internal stable fixed point, nR, along with two unstable
fixed points at n = 0 and n = Z. Selection pushes the system towards the
stable fixed point, thus it can take a long time to reach one of the absorbing
states.

(iii) Coordination: there is an internal unstable fixed point, nL, along with two
stable fixed points at n = 0 and n = Z.

(iv) Coexistence & coordination: In addition to the fixed points at n = 0 (stable)
and n = Z (unstable), there is both an unstable internal fixed point on the
left, nL, and a stable internal fixed point on the right, nR. Thus it resembles
coexistence, in that there is a stable mixed state; and coordination in that
there are two stable fixed points.

These regimes are all familiar in the evolutionary game theory literature for well-
mixed populations. The first three correspond to the behaviour of two-player ma-
trix games in well-mixed populations [49]: (i) prisoner’s dilemma/harmony game,
(ii) snowdrift game, and (iii) stag-hunt game. The final type, coexistence & coor-
dination, arises for both the N-player stag-hunt [54] and N-player snowdrift games
[55].

For the well-mixed population we see dominance when s is sufficiently small, and
thus the PGG is approximating an NPD. As expected, cooperation is dominant when
b/c is sufficiently high. For higher values of s there is a wide range of behaviour. In
a region around h = 0.5, if b/c is large enough, there are coexistence & coordination
dynamics. There is a large basin of attraction for nR and if the system reaches this
fixed point it will spend a long time in the vicinity. However, a single mutant invader
must cross nL to reach this, against the selection pressure. As b/c is increased, nL
and nR move further apart, increasing the size of the basin of attraction for nR. For
h = 0.5, the gradient of selection is symmetric (nL = Z − nR).

Decreasing h from 0.5, causes nL and nR to move to the left, eventually entering
the coexistence regime. The basin of attraction for the internal stable fixed point
is now 0 < n < Z. The system may spend a large amount of time near this point,
although it will ultimately end up in one of the absorbing states. In the coexistence
regime, as we discussed in Section 3.3 for the VD game with h = 0, cooperators and
defectors have a selective advantage when they are in sufficiently small numbers.
This can lead to the case where both are beneficial mutants, and thus cooperation
is able to be beneficial but not favoured.

Conversely as h is increased from 0.5, nL and nR move to the right and we enter
the coordination regime. This corresponds to the region in Figure 11 where very
high values of the benefit-to-cost ratio are required for cooperation to be beneficial,
even when cooperation is favoured. In Section 3.3 we argued, for the VD game with
h = 0.5, that this is due to the fact that both cooperators and defectors are at
a disadvantage when in small numbers. Indeed this is the defining feature of the
coordination regime, that n = 0 and n = 1 are stable fixed points. Thus any invader

21



0.000

0.005

G
(n

)

VT h = 0.0 h = 0.2 h = 0.5 h = 0.8
s = 1

h = 1.0

0.000

0.005

G
(n

) s = 5

0 100
n

0.000

0.005

G
(n

)

0 100
n

0 100
n

0 100
n

0 100
n

s = 10

b=1.5

3.5

0.000

0.005

G
(n

)

WM h = 0.0 h = 0.2 h = 0.5 h = 0.8

s = 1

h = 1.0

0.000

0.005

G
(n

) s = 5

0 100
n

0.000

0.005

G
(n

)

0 100
n

0 100
n

0 100
n

0 100
n

s = 10

b=3

11

Figure 12: Gradient of selection, G(n) for a PGG with logistic benefit function in a well-
mixed population (WM) and Voronoi tessellation model with decoupled update (VT). The
qualitative behaviour is very similar between the two, however occurs at different values of
the benefit, b/c. Where G(n) > 0, selection is working to increase n, and vice versa. The
roots of G(n) = 0 can be considered as fixed points, and we can use these to classify the
behaviour in different parameter regions.
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is at a disadvantage initially, as selection pushes it towards dying out. Therefore it
is possible that defectors and cooperators can be at an evolutionary disadvantage
compared to a neutral mutant.

The VT model behaviour is qualitatively very similar to that of the well-mixed
population. The major difference is that the full spectrum of behaviour is available
for a much smaller range of b/c values for the VT model. This means that coopera-
tion is successful at smaller benefit-to-cost ratios, as is consistent with our previous
findings. It should be noted however, that these classifications are often approxi-
mate for the VT model. We observe, in a number of cases, additional fixed points
very close to n = 0 and n = Z. It is also clear from Figure 12 that the coexistence
& coordination behaviour is much less pronounced that it is for the well-mixed case,
with the internal fixed points much closer to the boundaries.

4 Discussion
There is an extensive literature on cancer modelling, which goes way beyond evolu-
tionary game theory. For a review, see for example [56]. However, evolutionary game
theory is increasingly used in cancer modelling [57–59] both to elucidate tumorigen-
esis [30, 60–63] and to inform potential treatment strategies [64–67]. Experimental
evidence that malignant cells cooperate to drive tumour growth has been found
for breast cancer [10, 68] and glioblastoma [69]. Furthermore, evolutionary games
have been explicitly quantified in non-small cell lung cancer [70] and neuroendocrine
pancreatic cancer cell cultures [19]. These cancers both originate in epithelial cells,
of the lung and pancreas, respectively. Disrupting cooperation could therefore be
important for improving cancer treatment [12].

Many models of cancer evolution assume populations of cells to be well-mixed
[52, 64, 67, 71]. However, the importance of spatial structure is increasingly recog-
nised, even for simple mutations [72, 73]. Population structure has long been estab-
lished as a mechanism for promoting the evolution of cooperation [7]. If interactions
are limited to an individual’s neighbourhood, then cooperators can form mutually
beneficial clusters. However, the success of cooperation is also influenced by the
update rule. Results for the cycle graph in Section 2.1 demonstrate that a global
update rule, such as the shift update, can lead to less stringent conditions for co-
operation to be favoured when compared to local update rules. Within the local
update rules there are also clear differences: cooperation tends to fare better with a
death-birth update rule than a birth-death. In fact for the birth-death update on a
cycle, the condition for cooperation to be favoured under an NPD game is equivalent
to the well-mixed population. Thus the benefits of clustering are negated in this
case.

It is therefore important to take into account realistic population structure and
update dynamics of the tissue or tumour when considering the evolution of cooper-
ation amongst cells. Our focus has been to consider how global updating affects the
evolution of cooperation in a population structure representative of an epithelium.
We have used the VT model to represent an epithelium, which allows death and
division to be implemented independently, and therefore, it is trivial to implement
what we call the decoupled update rule [31]. We chose to focus on global updating,
as it presents the opposite extreme to local update rules which have been exten-
sively studied within evolutionary graph theory [9, 28, 33]. Furthermore, we have
been able to derive quasi-analytical results, which could be applied to other pop-
ulation models which use global updating. Our results are general for multiplayer
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games; however, we have focused on the analysis of sigmoid public goods games, as
it has been proposed that they provide good models for the production of diffusible
growth factors.

We have demonstrated that, for a sigmoid PGG, cooperation is more successful
in the VT model compared to a well-mixed population. In both cases, the evolu-
tionary outcomes depend on the parameters s and h of the logistic benefit function,
as well as the benefit-to-cost ratio. In general, a lower benefit-to-cost ratio is re-
quired for cooperative success for the VT model, than the well-mixed population.
In other words cells need a lower incentive to cooperate. This is consistent with our
expectations: both models use global updating, however the population structure
in the VT model allows for positive assortment of cooperators.

Although cooperation is more successful in the VT model, than the well-mixed
population, the qualitative behaviour is very similar. We have characterised the
evolutionary dynamics by considering conditions for which cooperation is beneficial
and/or favourable, as well as calculating the gradient of selection.

As long as the steepness, s, is large enough, we tend to see coexistence behaviour
when the inflection point, h, is less than a half and coordination behaviour when
it is greater. These regimes are characterised by the fixed points of the gradient of
selection. They also correspond to the regions in parameter space where cooperation
is beneficial, but not favourable (coexistence), and favourable, but not beneficial
(coordination). For small steepness, the game approaches an NPD and there is
dominance behaviour. In this regime, conditions for cooperation to be beneficial
and favoured coincide.

Examining the gradient of selection enables us to identify an additional dynam-
ical regime: mixed coexistence & coordination, which occurs in a region around
h = 0.5, as long as s and b/c are sufficiently large. This regime is characterised by
two stable fixed points, one corresponding to all-defection, and the other to a het-
erogenous, majority-cooperator state. This dynamic has been identified previously
for both well-mixed populations [52] and graph-structured populations with local
updating [30]. We have shown that it can also occur for the VT model, however the
internal fixed points tend to be much closer to the boundaries.

It is beyond the scope of this paper to consider the full dynamics for an ep-
ithelial population structure with local update rules. However, we have considered
conditions for cooperation to be favourable on a hexagonal lattice with death-birth
update rule using results from [28]. We found the critical benefit-to-cost ratios to be
intermediate between the well-mixed population and VT model. This is consistent
with previous results for two-player games [31]. Taken together, these results suggest
not only that population structure promotes cooperation, but that global updating
also plays a crucial role. We can thus consider a general rule for cooperation is that
it prefers local game play but global competition for offspring.

It is worth taking a moment to consider the implications of beneficial and
favourable mutations for invasion, and how we distinguish between the two con-
cepts. Whether or not a mutation is beneficial is perhaps the most relevant measure
for a single invasion event. It essentially tells us that the mutated cell has a higher
probability of invasion in a wild-type population than a wild-type cell would have,
and therefore it has an evolutionary advantage. The significance of a mutation being
favourable is a little less clear, as it compares two different invasion processes: the
probability of invasion of a mutated cell in a wild-type population is higher than the
converse scenario, where a wild-type cell invades a population of mutants. However,
the condition for a mutant to be favoured is also equivalent to the condition for
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cooperation to dominate, if mutation is allowed.
These results suggest that the population structure, the update rule and the game

all play important roles in determining the evolutionary success of cooperation. Can-
cer models which utilise evolutionary games [74, 75] may therefore underestimate the
success of cooperative phenotypes, if they fail to account for population structure
or assume that death and division are more tightly coupled than is realistic. For
example, therapeutic strategies that aim to eliminate cooperation by manipulating
evolutionary dynamics, rely on accurate predictions of those dynamics [11].

We do not suggest that our regime, with fully local interactions and fully global
competition is necessarily realistic for invasion processes in tissues. We have as-
sumed that cells only interact with their immediate neighbours; however, interaction
groups may be much larger and likely depend on the specific context. For exam-
ple, in the case of growth factor production, group size will depend on diffusion
range. Estimates of these diffusion ranges are difficult to obtain experimentally [20].
However, larger group sizes tend to suppress cooperation [16], so it is an important
consideration.

We chose to focus on global updating, as it presents the opposite extreme to a
local update rule. It is likely, however, that update dynamics in a real epithelium
lie somewhere in between. Contact inhibition [76], and other density-dependent
processes [77, 78], result in spatial coupling between death and division, which is
likely tissue dependent. Stronger contact inhibition could result in dynamics closer
to the death-birth update [39], while weaker contact inhibition is closer to global
updating.

Interestingly, loss of contact inhibition is associated with malignancy [76], sug-
gesting that updating is more global, and thus cooperation could be more successful,
than in healthy tissues. In future work, we will consider the effect of contact in-
hibition on cooperation, and the spectrum of behaviour between local and global
updating. Understanding the nature of spatial coupling in real epithelia, or in can-
cerous tumours, could be crucial for predicting evolutionary outcomes.

Our general conclusion that local game play and global competition for offspring
favour cooperation has implications beyond applications to cancer, where coopera-
tion unusually may be considered undesirable. In a societal context, where cooper-
ation is desirable, it may be promoted by engineering an environment rich in local
social interactions, which nevertheless allows for imitation of successful strategies
more globally.
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Appendix A Voronoi tessellation model
The Voronoi tessellation (VT) model was introduced in [41, 42]. We use the version
and parameter values from [31] in all simulations in this paper. Parameters are given
in Table 1 and the model is defined as follows.

Table 1: Table of parameters used in the Voronoi tessellation model [31, 79].

Parameter Description Value

µ spring constant 50
s natural cell separation 1
ε initial sibling cell separation 0.1
η drag coefficient 1
∆t time-step (hours) 0.005
λ rate of division/death (hours−1) 12−1

The VT model represents a tissue as a set of points points in a fixed domain with
periodic boundary conditions. Each point corresponds to a cell-centre and moves
subject sto spring-like forces cells exert on their neighbours.

We define the force cell j exerts on its neighbour i to be

F ij(t) = −µr̂ij(t)(|rij(t)| − sij(t)) , (55)

where µ is the spring constant, rij = ri − rj is the vector pointing from cell j
to cell i, and sij is the natural separation between cells i and j. This is set be a
constant sij = s, with the exception that newborn sibling cells have a separation ε
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immediately after division. For these cells, sij grows linearly over the course of an
hour to reach s. The total force on a cell i is given by

F i(t) =
∑

j∈Ni(t)

F ij , (56)

where Ni(t) denotes the set of cells neighbouring i.
It is assumed that motion is over-damped and thus the equation of motion for i

is the first order differential equation

η
dri
dt

= F i(t) , (57)

where η is the damping constant. This is solved numerically using

ri(t+ ∆t) = ri(t) +
∆t

η
F i , (58)

where the time-step, ∆t, is sufficiently small to ensure numerical stability.
At each time-step, after cells have moved, a Voronoi tessellation is performed.

This partitions the domain into polygonal regions, each corresponding to the shape of
a cell. It also defines the neighbourhood connections, which are needed to determine
the forces cells exert on one another, as well as cell fitnesses.

Cell division is implemented within the VT model, by removing the parent cell
and replacing it with two progeny cells, separated by a distance ε, across a uniformly
random axis. Cell death simply requires the dead cell to be removed. After a
death or division, Voronoi tessellation must be performed to obtain new neighbour
connections.

Appendix B Neighbour distributions in the VTmodel
In Sections 2.1 and 2.2 we derived conditions under which cooperation is favoured
and beneficial, given by Equations (41) and (47) respectively. These derivations are
based on the assumption that the frequency of cells with k neighbours is a fixed
distribution, gk, independent of the cell type or the number of cooperators in the
population, n.

Figure 13 plots neighbour distributions from simulations of the VT model for
cooperators and defectors at different values of n. It is clear from the plot that
the assumption is a reasonable one. The neighbour distributions are approximately
equal for different values of n and for the two cell types. The exception is when
there are either very few cooperators or very few defectors, i.e. near n = 1 and
n = 99 respectively. In the case where there is only one or very few cooperators,
the cooperator neighbour distribution becomes slightly more narrow. The converse
is true when there are few defectors.

Appendix C Minimising the critical benefit-to-cost
ratio at which cooperation is favoured

In Section 2.2 we considered conditions for cooperative success for a sigmoid benefit
function, as defined by Equation (4). It is clear from Figure 6 that the critical
benefit-to-cost ratios, (b/c)∗1, at which ρC = ρD, are minimised at h = 0.5, and
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Figure 13: Neighbour distributions in the VT model for cooperators (C) and defectors (D),
for varying cooperator population size, n. Data is generated from simulations with total
population size Z = 100 in the neutral selection limit, δ = 0.

symmetric across that point. This appears to hold for both the Voronoi tessellation
model with decoupled update, and for the death-birth update on a fixed hexagonal
lattice. In the following we show that this is indeed true for any system where
0 < s <∞ and the structure coefficients, σj, are increasing for 0 ≤ j < k.

We rewrite Equation (51), defining (c/b)∗1, such that cooperation is favoured for
c/b < (c/b)∗1 (c

b

)∗
1

=
1

Z − 1

k∑
j=0

σj

[
β

(
j + 1

k + 1

)
− β

(
k − j
k + 1

)]
. (59)

We have assumed that the number of neighbours, k, is fixed, however the results are
easily generalisable to variable k. Defining

γj = β

(
j + 1

k + 1

)
− β

(
k − j
k + 1

)
(60)

we obtain (c
b

)∗
1

=
1

Z − 1

σk +
∑

k>j≥k/2

(σj − σk−j−1)γj

 . (61)

By taking derivatives with respect to h we show that for k/2 ≥ j < k, γj(h) is
maximised when h = 0.5. In order that this corresponds to a unique maximum of
(c/b)∗1, and thus a minimum of the critical benefit-to-cost ratio, certain conditions
on σj must be satisfied.

First we show that γj has one extremum at h = 0.5 for 0 < s < ∞. We
substitute Equation (4) into Equation (60) and take the first derivative with respect
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to h, letting r = j+1
k+1

. Thus we obtain

dγj
dh

=
d

dh

[
(1 + es(h−r))−1 − (1 + es(h+r−1))−1

(1 + es(h−1))−1 − (1 + esh)−1

]
(62)

=
d

dh

[
es(r−1) − e−sr

1− e−s
· (1 + es(h−1))(1 + esh)

(1 + es(h−r))(1 + es(h+r−1))

]
(63)

= s · e
s(r−1) − e−sr

1− e−s
· e

sh(1 + e−s − e−sr − es(r−1))(1− es(2h−1))

(1 + es(h+r−1))2(1 + es(h−r))2
. (64)

Setting dγj/dh = 0, gives one root at h = 0.5, for 0 < s < ∞. This is a unique
stationary point of (c/b)∗1 so long as there is at least one value of j ∈ [k/2, k) for
which (σj − σk−j−1) 6= 0. We can show that this is a maximum by considering the
second derivative at h = 0.5

d2γj
dh2

∣∣∣∣
h= 1

2

= −2s2 · e
s/2(1 + e−s − e−sr − es(r−1))(es(r−1) − e−sr)
(1− e−s)(1 + es(r−1/2))2(1 + e−s(r−1/2))2

(65)

which is negative given that 1/2 < r < 1. This corresponds to (k − 1)/2 < j < k,
encompassing all the values of j which we sum over in Equation (61). Therefore, in
order that (c/b)∗1 is maximised when h = 0.5, we require that (σj − σk−j−1) ≥ 0 for
k/2 ≤ j < k and non-zero for at least one value of j in the range. This condition is
guaranteed if σj is an increasing, but not constant, function for 0 ≤ j < k.

It is clear from Figure 5 that σj+1,k > σj,k ∀j, k for the VT model with decoupled
update, therefore h = 0.5 maximises (c/b)∗1 in this case. For k-regular graphs with
death-birth update rule, we can verify whether this is true by using the approximate
expressions for the structure coefficients derived in [28]. These are plotted for various
k values in Figure 14. For smaller values of k, we can see that σj is strictly increasing
for 0 ≤ j < k. However, as k increases, a growing region appears for which σj is
constant. So long as there is at least one value of j < k for which (σj −σk−j−1) > 0,
(c/b)∗1 is maximised at h = 0.5. However, as k →∞, we approach the case where σj
are constant for j < k, and we regain the well-mixed population result that (c/b)∗1
are independent of h.
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Figure 14: Structure coefficients, σj , for k-regular graphs with death-birth update rule
[28]. It is clear that σj is increasing (or constant) for j < k.

Thus far we have limited ourselves to the case where 0 < s < ∞. In the limit
s→ 0, we obtain an NPD game with a linear benefit function which is independent
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of h. The value of (c/b)∗1 therefore does not depend on h either, as can be seen in
Figure 6. In the limit s→∞, the VD game is approached and the benefit function
ceases to be continuous. In this case the unique maximum at h = 0.5 is maintained
only if σj are strictly increasing, and therefore (σj−σk−j−1) > 0. This is true for the
VT model with decoupled update and for k-regular graphs with death-birth update,
if k is sufficiently small. On the other hand, if (σj − σk−j−1) = 0 for some values of
j ∈ [k/2, k), h = 0.5 ceases to be an isolated maximum, and there is a region of h
values, around h = 0.5, which maximise (c/b)∗1.

Appendix D Equivalence of beneficial and favoured
mutants

D.1 Antisymmetry-of-invasion property

In Sections 2.1.6 and 2.2 we derived the conditions under which a mutant is bene-
ficial or favoured, respectively, for a global update rule. Here, we show that these
conditions are equivalent if the payoffs satisfy a property we call antisymmetry-of-
invasion. We consider multiplayer games with fixed group size. However, the results
can be generalised to variable group size, given certain conditions.

The values θAj and θBj , defined by Equation (50), can be written as

θAj =
Z−1∑
n=1

(Z − n)fAj (n)

θBj =
Z−1∑
n=1

nfAk−j(n) .

(66)

Thus we have

θAj + θBk−j = Z
Z−1∑
n=1

fAj (n) = Zσj , (67)

where the last equality is from the definition of σj as stated by Equation (35). The
condition for A to be beneficial, given by Equation (48), thus becomes

k∑
j=0

[
θAj aj −

(
Zσj − θAj

)
bk−j

]
> 0 . (68)

This can be rewritten in the form

k∑
j=0

(
θAj −

Z

2
σj

)
(aj + bk−j) +

Z

2

k∑
j=0

σj (aj − bk−j) > 0 . (69)

If the payoffs satisfy
aj + bk−j = Q , (70)

where Q is a constant that is independent of j, then the first term in Equation (69)
vanishes. The condition for A to be beneficial, therefore, becomes

k∑
j=0

σj (aj − bk−j) > 0 , (71)
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which is equivalent to the condition for A to be favoured, as defined by Equation (6).
Thus the conditions for cooperation to be beneficial and favoured are equivalent
when Equation (70) holds, which we call the antisymmetry-of-invasion property. If
Q is independent of k, this result generalises to variable group size.

D.2 Implications for antisymmetry-of-invasion

In games which satisfy antisymmetry-of-invasion, defined by Equation (70), there is
a fixed total payoff which can be obtained when equal numbers of A and B co-players
are distributed between an A and B player. By this we mean that the A-player has
j other A-players in its group and k − j B-players, whilst the B-player has j other
B-players, and k − j A-players. Regardless of how the co-players are distributed
(the value of j), the sum of the payoffs to the A and B player are the same.

The implications for this property can be better understood if we consider sym-
metric invasion processes. Consider, for example an arbitrary evolutionary path
through the state space. This path can be represented by a sequence of states

S = (G0, s0)→ (G1, s1)→ · · · → (GL, sL) , (72)

where Gq are graphs representing the population structure at time tq and sq are
Z-dimensional vectors giving the type of each individual at time tq. Thus, [sq]i = 1
if the ith individual is an A-player and [sq]i = 0 if it is a B-player. Recall Z is the
population size. There are L transitions between states, each of which is caused by
an update event (i.e. a death and a division).

The symmetric invasion process S̃ is obtained by flipping the type of each indi-
vidual (A→ B and B → A), as illustrated in Figure 15. Thus

S̃ = (G0, s̃0)→ (G1, s̃1)→ · · · → (GL, s̃L) , (73)

where [s̃q]i = 1− [sq]i.
Given any evolutionary path S and a symmetric path S̃ we can show that, if

the antisymmetry-of-invasion property holds, the probabilities of each occurring are
related in the following way:

P (S)− P (S0) = P (S0)− P (S̃) , (74)

at least to O(δ). Here, S0 is the evolutionary path with neutral selection δ = 0, i.e.
all individuals have the same fitness. Thus, if any given path has an advantage over
the neutral process, the symmetric path must have an equivalent disadvantage.

We can further show that the following relation between the fixation probability
for an A-player and the fixation probability of a B-player, denoted by ρA and ρB,
respectively, must hold:

ρA − 1/Z = 1/Z − ρB , (75)

again to O(δ). Recall that ρ0 = 1/Z is the fixation probability for a neutral mutant.
Thus, antisymmetry-of-invasion ensures that ρA > ρ0 implies ρB < ρ0, and hence
that the conditions for A or B to be favourable are the same as to be beneficial.

Proof of Equation (74). Consider a path S as described by Equation (72). The
transition probability from state (Gq, sq) to (Gq+1, sq+1) is given by

P ((Gq, sq)→ (Gq+1, sq+1)) = P (sq → sq+1) · P (Gq → Gq+1|sq → sq+1)

=
1

Z2
{1 + δ [πbirth(Gq, sq)− π(Gq, sq)]} · ψq ,

(76)
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where πbirth is the payoff of the proliferating individual and π is the average payoff
in the population. The probabilities for transitions between graphs are given by
P (Gq → Gq+1|sq → sq+1) = ψq.

The probability of S occurring, given initial state (G0, s0), is given by multiplying
the transition probabilities, i.e.

P (S) =
L−1∏
q=0

P ((Gq, sq)→ (Gq+1, sq+1)) , (77)

which in the weak selection limit δ → 0 becomes

P (S) =
1

Z2L
(1 + δX(S))Ψ(S) +O(δ2) . (78)

Here,

X(S) =
L−1∑
q=0

(πbirth(Gq, sq)− π(Gq, sq)) (79)

and

Ψ(S) =
L−1∏
q=0

ψq . (80)

The symmetric evolutionary path S̃ is equivalent to S, except that every indi-
vidual has flipped its type. We assume that, in the weak selection limit at least,
graph transitions do not depend on type, and thus, Ψ(S̃) = Ψ(S). The payoffs of
course do depend on type, thus we write

X(S̃) =
L−1∑
q=0

(πbirth(Gq, s̃q)− π(Gq, s̃q)) . (81)

If the antisymmetry-of-invasion property, defined by Equation (70), holds then

X(S̃) =
L−1∑
q=0

((Q− πbirth(Gq, sq))− (Q− π(Gq, sq))) = −X(S) . (82)

Therefore, substituting into Equation (78), we obtain

P (S̃) =
1

Z2L
(1− δX(S))Ψ(S) +O(δ2) . (83)

Setting δ = 0 gives P (S0) = Ψ(S)/Z2L. Therefore, by summing Equations (78)
and (83), we obtain P (S) + P (S̃) = 2P (S0), from which Equation (74) follows.

Proof of Equation (75). The fixation probability for a single initial A-player is
obtained by summing P (Si) over all paths Si that start with a single initial A-player,
and end with fixation for A-players. Summing over Equation (78), we obtain

ρA =
∑
i

Ψ(Si)

Z2L(Si)
+
∑
i

δΨ(Si)

Z2L(Si)
X(Si) +O(δ2)

=
1

Z
+
∑
i

δΨ(Si)

Z2L(Si)
X(Si) +O(δ2) ,

(84)
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where we have used the fact that the fixation probability for neutral selection (δ = 0)
is ρ0 = 1/Z. The fixation probability for B-players can similarly be obtained by
summing P (S̃i) over all paths S̃i that start from a single B-player and end with
B-player fixation. Thus,

ρB =
1

Z
−
∑
i

δΨ(Si)

Z2L(Si)
X(Si) +O(δ2) . (85)

Summing Equations (84) and (85) gives us ρA + ρB = 2/Z, and thus Equation (75).

(a) Original state. (b) Symmetric state.

Figure 15: Symmetric states. (a) a mutant clone of A-players is invading a population of
B-players. (b) a mutant clone of B-players is invading a population of A-players. If the
antisymmetry-of-invasion property holds a given A-player in state (a) has payoff aj , the
equivalent B-player in state (b) will have payoff bk−j = Q− aj .

D.3 Antisymmetry-of-invasion for public goods games in ep-
ithelia

In Section 3 we considered the conditions under which cooperative mutants are
beneficial and successful for sigmoid public goods games in the VT model with
global updating and for the well-mixed population. Cooperation is beneficial when
b/c > (b/c)∗0 and favoured when b/c > (b/c)∗1. It is is evident from Figure 11, that
in general (b/c)∗0 6= (b/c)∗1. However, it appears in the figure that they are equal
when h = 0.5 and/or s → ∞. Recall, that h is the inflection point and s is the
steepness of the logistic function, defined by Equation (5). Here, we show that both
cases satisfy the antisymmetry-of-invasion property defined by Equation (70) and
thus (b/c)∗0 = (b/c)∗1 must hold.

When s → 0 we approach the NPD, which has a linear benefit function, given
by Equation (2). The cooperator and defector payoffs are thus

aj,k = b ·
(
j + 1

k + 1

)
− c and bj,k = b ·

(
j

k + 1

)
, (86)

respectively. We therefore obtain

aj,k + bk−j,k = b− c . (87)

As b−c is a constant independent of j and k, this satisfies antisymmetry-of-invasion,
defined by equation (70). The critical benefit-to-cost ratio above which cooperation
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is favoured must, therefore, be equal to the critical benefit-to-cost ratio above which
cooperation is beneficial, i.e. (b/c)∗0 = (b/c)∗1.

We can also show that antisymmetry-of-invasion is satisfied when h = 0.5. The
sigmoid benefit function, defined by Equation (4), has the symmetry property β(x) =
1− β(1− x) when h = 0.5. The cooperator and defector payoffs are therefore given
by

aj,k = b · β
(
j + 1

k + 1

)
− c = b ·

[
1− β

(
k − j
k + 1

)]
− c

bj,k = b · β
(

j

k + 1

)
,

(88)

respectively. Once again, we find that aj,k + bk−j,k = b − c. Therefore, there is
antisymmetry-of-invasion when h = 0.5, so (b/c)∗0 = (b/c)∗1 must hold.
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